

May 10-11, 2018 Frankfurt, Germany

Yawei Liu et al., J Transm Dis Immun 2018, Volume 2 DOI: 10.21767/2573-0320-C2-005

JOINT EVENT

22nd Edition of International Conference on

Immunology and Evolution of Infectious Diseases

12th Edition of International Conference on

Tissue Engineering and Regenerative Medicine

NEURONAL IFN-BETA—INDUCED PI3K/AKT-FOXA1 SIGNALING IS ESSENTIAL FOR GENERATION OF FOXA1*TREG CELLS

Yawei Liu¹, Andrea Marin¹, Patrick Ejlerskov¹, Louise Munk Rasmussen¹, Marco Prinz^{2, 3} and Shohreh Issazadeh-Navikas¹

¹BRIC - University of Copenhagen, Denmark

²Institute for Neuropathology - University of Copenhagen, Germany

³Centre for Biological Signaling Studies - University of Copenhagen, Germany

Neurons reprogram encephalitogenic T cells $(T_{(enc)})$ to become regulatory T_{reg} cells $FoxP3^{+}T_{regs}$ or $FoxA1^{+}T_{regs}$. We reported previously that neuronal ability to generate $FoxA1^{+}T_{regs}$ was central to preventing neuroinflammation in experimental autoimmune encephalomyelitis (EAE). Mice lacking the cytokine interferon (IFN) β were defective in generating $FoxA1^{+}T_{regs}$ in the brain. Neuron-induced $FoxA1^{+}T_{regs}$ were capable of preventing chronic and demyelinating EAE in mice lacking IFN β . Here we show that lack of neuronal IFN β -signaling was associated with lack of neuronal expression of program death-ligand1 (PDL1), which also prevented their ability to reprogram T_{enc} cells to $FoxA1^{+}T_{regs}$. Transfer of IFN β competent encephalitogenic T cells to mice lacking IFN β or its receptor; IFN AR in the brain (Nes^{Cre} : $Ifnar^{fl/fl}$) led to the absence of $FoxA1^{+}T_{regs}$ generation and aggravated neuroinflammation. We identified that IFN β activated neuronal PI3K/Akt signaling. Phosphorylated Akt consequently bound to transcription

factor FoxA1, which upon translocation to the nucleus induced neuronal PDL1 expression. Conversely, inhibition of PI3K/Akt, or FoxA1 and PDL1 knock-down blocked neuronal ability to generate FoxA1+T $_{\rm regs}$. Our study identified crucial molecular player's central for neuronal ability to reprogram pathogenic T-cells and to generate FoxA1+T $_{\rm regs}$, which could be a therapeutic target to prevent neuroinflammation.

Biography

Yawei Liu has a medical doctor background and has been doing medical research for more than 10 years. Since her Ph.D., she mainly focused on the role of neurons in the regulation of auto-reactive T cells and central nervous system (CNS) inflammation. We reported a novel function for neurons as being highly immune-competent cells, based on their crucial role in the regulation of T-cell responses and CNS inflammation in models of multiple sclerosis

Yawei.liu@bric.ku.dk