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Abstract
Alzheimer’s Disease (AD) poses a significant public health 
challenge due to its irreversible and progressive nature 
while lack of a cure. As a potential strategy to combat AD, its 
prevention becomes increasingly attractive. Mild Cognitive 
Impairment due to AD (MCI-AD) represents a critical 
transitional stage between normal age-related cognitive 
decline and more severe AD conditions, occurring just 
before dementia onset. Unfortunately, there is currently no 
established animal model that accurately recapitulates MCI-
AD characteristics. While many laboratories have 
traditionally used normally aged wild-type animals as 
experimental models, this approach falls short in 
representing the inherently worse state of MCI-AD 
compared to normal aging. To address this gap, we 
introduce an animal model-a transgenic mouse line with 
genetic inactivation of G protein-coupled Receptor Kinase-5 
(GRK5), commonly known as the GRK5 Knockout (GRK5KO) 
mouse. These GRK5KO mice exhibit amnesia, cognitive 
deficits, in-creased β-amyloid levels, Neurofibrillary Tangle 
(NFT) immunopositive axonopathy and hippocampal 
neurodegenerative changes. Importantly, these pathological 
alterations predominantly impact the entorhinal, trans 
entorhinal and hippocampal cortices, aligning with human 
MCI-AD criteria and Braak stage II of human AD progression.
Notably, female GRK5KO mice show approximately 2.5 times
more NFT-positive axonopathy than males, mirroring the
higher prevalence of AD cases in women. Collectively,
existing data strongly supports the GRK5KO mouse as a
qualified animal model for studying MCI-AD.
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Introduction
Alzheimer's Disease (AD) is the predominant cause of 

dementia, accounting for 60%-80% of dementia cases [1]. It is 
characterized by progressive decline in memory and other 
cognitive abilities due to neurodegenerative changes. Currently, 
there are no known methods for reversing or curing this disease 
[2]. This makes proactive prevention the most effective strategy 
to combat AD [3]. In serving such a purpose, a clinical collection 

of Mild Cognitive Impairment due to AD (MCI-AD) was identified, 
which represents the last chance to intervene before the onset 
of AD. This article briefly describes the characteristics of MCI-AD 
in humans and the evidence that G protein-coupled Receptor 
Kinase-5 (GRK5) Knockout (GRK5KO) mice mirror MCI-AD 
criteria.

Mild Cognitive Impairment due to
Alzheimer's Disease

MCI was initially established to understand the characteristics 
of individuals in a presumed pre-AD condition, which represents 
a transitional stage between normal age-related cognitive 
decline and more severe conditions like AD [4,5]. MCI involves 
noticeable cognitive decline beyond what is expected for a 
person’s age but does not meet the criteria for dementia. 
However, MCI encompasses a heterogeneous group of patients 
with varying etiologies. Its longitudinal development does not 
always progress to AD; some individuals develop other 
dementias, while others remain in the MCI stage or even revert 
to normal cognition. Only a small portion of MCI cases 
eventually progress to AD. To better identify the true "pre-AD" 
population for AD prevention, experts led by the National 
Institute on Aging (NIA) and the Alzheimer’s Association 
narrowed down MCI to a subgroup with a much higher tendency 
to develop AD down the road, terming this subgroup MCI due to 
AD (MCI-AD) [6,7].

To facilitate both clinical and laboratory research, specific 
clinical diagnostic criteria and research criteria were established 
for MCI-AD [6,8]. The clinical diagnostic criteria of MCI-AD were 
developed to aid clinicians in identifying MCI-AD without relying 
on invasive and more complex/expensive diagnostic tools such 
as imaging techniques. This condition is characterized by 
memory problems and cognitive issues, often serving as early 
indicators of potential progression to AD. The clinical diagnostic 
criteria for MCI-AD typically include:

Evidence of cognitive decline
There should be a noticeable decline in cognitive abilities, 

particularly in memory, exceeding what is expected for the 
individual’s age but not severe enough to meet criteria for 
dementia.
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Objective cognitive impairment
Objective evidence, usually obtained through cognitive 

assessments and standardized tests, indicates impairment in one 
or more cognitive domains.

Preserved independence in functional abilities
Individuals with MCI generally maintain their independence in 

daily functioning and do not meet the criteria for dementia, 
which involves a significant impact on daily activities. These 
criteria help distinguish MCI from normal age-related cognitive 
changes and more severe forms of cognitive impairment. The 
distinction between MCI and AD lies in the severity and impact 
on daily functioning. In MCI, individuals may experience 
cognitive challenges, especially in memory, but their overall 
functional abilities remain largely intact. The cognitive decline is 
noticeable but not severe enough to significantly interfere with 
daily activities. This intermediate stage allows healthcare 
professionals to identify potential early signs of AD or another 
type of dementia. If there is significant cognitive decline 
impairing daily functioning, a diagnosis of AD or another form of 
dementia may be considered.

From a research perspective, MCI-AD requires amnesia and at 
least another domain of cognitive decline, as well as evidence of 
concurrent AD pathogenesis [6,7]. Amnesia is essential, but 
research indicates that having another domain of cognitive 
impairment significantly increases the odds of developing AD in 
the future. Individuals with MCI-AD often exhibit pathogenic 
changes associated with AD, including:

Amyloid-Beta (Aβ) plaques
If MCI patients show an accumulation of Aβ or Senile Plaques 

(SPs) in the brain, a hallmark characteristic of AD, they are rated 
as A+ according to the ATN system [9,10].

Tauopathy
Elevated levels of Hyperphosphorylated Tau (pTau) protein, 

typically forming Neurofibrillary Tangles (NFTs). This is another 
hallmark characteristic of AD and is regarded as T+ in the ATN 
system.

Neurodegeneration
Structural brain changes and neuronal loss may be present in 

specific regions associated with memory and cognition, 
indicating neurodegeneration and is regarded as N+ per the ATN 
system. These changes contribute to the progression from MCI 
to AD. However, not everyone with MCI goes on to develop AD 
and the rate of progression varies among individuals. Having at 
least one or two AD characteristic changes in the ATN system is 
essential for MCI-AD, with more ATN positives indicating a 
higher likelihood of developing AD. Therefore, the pathogenic 
subtypes of MCI-AD include A+T-N-, A+T+N-, A-T+N- and A+T+N+, 
with the latter representing the latest stage, right on the verge 
of AD onset [11-14].

In MCI-AD, certain brain areas associated with memory and 
cognitive function are often affected, including the 
hippocampus, entorhinal cortex, temporal lobes and prefrontal 
cortex. The specific areas affected can vary between individuals 
and the progression of structural changes may influence the 
severity and type of cognitive impairment observed. 
Neuroimaging techniques, such as Magnetic Resonance Imaging 
(MRI) or Positron Emission Tomography (PET) scans, help 
researchers and clinicians visualize these changes in the brain. 
Studies utilizing PET scans have indicated that MCI-AD 
corresponds to Braak stage II, primarily affecting the entorhinal, 
transentorhinal and hippocampal cortices [14].

Furthermore, brain inflammation or neuroinflammation, is 
recognized as a significant factor in AD progression. Evidence 
suggests the involvement of neuroinflammatory processes in 
MCI-AD, with increased levels of inflammatory markers observed 
in the brains of affected individuals [6,15]. Microglia, immune 
cells in the brain, play a role in the inflammatory response. 
However, the relationship between neuroinflammation and MCI 
is complex and not fully understood, though it is considered a 
part of the broader cascade of changes associated with AD 
progression, with heavier involvement in later stages.

MCI-AD is not a homogeneous condition and patients may 
exhibit variability in etiology and clinical presentation. However, 
commonalities exist among individuals diagnosed with MCI-AD, 
including underlying Alzheimer’s pathology, memory 
impairment, neurological changes and cognitive decline beyond 
age expectations. Despite these commonalities, considerable 
heterogeneity exists in MCI cases, emphasizing the need for 
personalized approaches in understanding and managing this 
condition.

GRK5KO Mice-A Model of GRK5 Deficiency 
Recapitulates Characteristics of MCI-AD

GRK5 and its relevance to AD
Our comprehension of biological responses to stimuli exceeds 

that of their diminishing counterpart, desensitization. The 
latter involves a reduction in responsiveness to persistent stimuli 
while selectively engaging with new ones. G protein–coupled 
Receptor Kinases (GRKs) play a critical role in this process, 
particularly in signaling mediated by G Protein–Coupled 
Receptors (GPCRs), which constitute the largest family of signal-
transducing proteins [16]. Central to its role in uncoupling G 
proteins from their coupled GPCRs upon the receptor 
activation for turning off the GPCR signaling, this novel GPCR 
regulatory mechanism earned the Nobel Prize in Chemistry in 
2012 for Dr. Robert Lefkowitz, who contributed to the 
discovery of most GRKs and arrestins [17,18].

Currently, seven members of GRKs are identified: GRK1 to 
GRK7 [19,20]. Among them, GRK5 stands out as a ubiquitously 
distributed member implicated in various physiological functions 
[19,21]. Its activity has been associated with age-related
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ailments such as neoplastic, metabolic, neurodegenerative and 
cardiovascular diseases, including type 2 diabetes mellitus, 
cardiac hypertrophy, hypertension, Parkinson’s disease and AD 
[22-30]. During aging, dysfunction of the insulinotropic signaling 
cascade, affecting glucose sensing, uptake and metabolism, 
plays a pivotal role in aging across animal models [31]. The 
insulinotropic/insulin-like growth factor system primarily 
controls animal longevity, with genes associated mainly with this 
system [32-53]. GRK5’s potential role in aging is underscored by 
its strong expression in adipose tissues, suggesting its impact on 
the glycoregulatory system [32]. Studies in GRK5KO mice 
demonstrated significant insulin resistance and GRK5 genetic 
polymorphisms have been linked to type 2 diabetes mellitus and 
the efficacy of antidiabetic drugs [33,34]. Furthermore, studies 
in GRK5KO mice highlighted its importance in metabolism, 
showing decreased white adipose tissue mass, reduced 
adipogenic gene expression and impaired adipocyte 
differentiation on a high-fat diet [33,35]. Although human data 
on GRK5 and metabolism are limited, they suggest an 
association with apolipoprotein B levels and total LDL-
cholesterol, emphasizing its role in cholesterol metabolism. In 
addition, NF-kB regulates GRK5 expression, indicating a feed-
forward loop between these two systems, characteristic of aging 
[36]. GRK5 emerges as a vital component in energy metabolism 
and chronic inflammation paradigms, both strongly linked to 
molecular aging pathologies and various human disorders [37]. 
These insights position GRK5 as a potential therapeutic target 
for age-related diseases such as cardiovascular disease, 
neurological disorders and metabolic disorders [19,21,38].

The relevance of GRK5 to AD research became evident when 
rapid loss of functional/membrane GRK5 due to Aβ exposure was 
identified [29]. Subsequently, brain GRK5 deficiency was 
observed in the prodromal stage of AD in CRND8 AD transgenic 
mice and human AD autopsy samples [17,29]. GRK5 down-
regulation is associated with prolonged platelet-derived growth 
factor receptor-β signaling and treatments with gonadotropin-
releasing hormone, thyroid stimulating hormone, morphine or 
lipopolysaccharide [39-43]. Because plasma membrane-bound 
GRK5 is considered the functional portion for its GPCR kinase 
activity, membrane GRK5 deficiency could occur due to reduced 
membrane-associated GRK5 levels, in addition to reduced overall 
GRK5 expression [17,29]. Physiologically active GRK5 primarily 
associates with the plasma membrane, where it can be anchored 
on the inside of the cell membrane by binding to 
Phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphoserine 
[16,19]. Conversely, in the cytosol, GRK5 tends to associate with 
Ca2+/Calmodulin and F-actins [16,19]. Therefore, the balance of 
binding force for GRK5 between membrane (e.g., PIP2) and 
cytosol (e.g., Ca2+/Calmodulin) may be important to regulation of 
its functionality, transitioning between a GPCR kinase and a 
signaling molecule or even a transcriptional regulator in the cell 
nucleus [17]. For instance, in cultured cells, Aβ can cause rapid 
(within minutes) GRK5 membrane disassociation, leading to 
membrane GRK5 deficiency, while increased cytosolic GRK5 may 
participate in mediating Aβ-induced cellular signaling changes 
that often prime different cells to become more sensitive to 
many cellular stressors [29,44,45]. From this perspective, 
potential causes of GRK5 deficiency could be attributed to factors

like cellular stress, calcium imbalance, nutritional deficiencies 
(especially phospholipids) and aging [17,44-48]. The relatively 
high levels of normal GRK5 distribution in the earliest affected 
brain regions of AD, particularly the limbic system, along with Aβ-
induced down-regulation of GRK5, implicate involvement of GRK5 
deficiency in AD [49,50]. While relations of GRK dysfunction to 
Aβ-related AD pathogenesis are still under investigation, another 
interesting piece of evidence is that a single nucleotide 
polymorphism associated with a functional GRK5 variant (GRK5-
Gln41Leu) appears to decrease GRK5 translocation from the 
membrane to the cytoplasm, reducing tau hyperphosphorylation 
and is associated with a lower risk of late-onset AD [51].

As pointed out by Kohout and Lefkowitz, the regulation of 
GPCRs by GRKs exhibits both selectivity and redundancy [19]. This 
redundancy allows GRKs to compensate for each other's loss 
without significantly impacting the overall efficiency of timely 
GPCR signaling attenuation. However, studies in individual GRK 
knockout mice have unequivocally shown selective regulation by 
GRKs in vivo. For example, mice deficient in GRK2, 3, 5 and 6 
display impaired desensitization of adrenergic, odorant, 
muscarinic and dopaminergic receptors, respectively [52-55]. 
Moreover, GRK5 deficiency selectively affects muscarinic 
receptors, particularly the Gi/o-coupled M2 and M4 receptors, 
without impacting M1/M3/M5 or non-muscarinic receptors 
[19,38,52,56]. Importantly, this high selectivity is observed only in 
vivo, not in vitro, suggesting a potential influence of topographic 
GRK subtype expression in vivo. Furthermore, this selectivity is 
apparent only when GRK deficiency occurs without 
compensation. Specifically, the membrane-associated nature of 
GRK5 renders its levels in neuronal terminals, such as spines and 
synapses, highly sensitive to early neurodegenerative changes. 
This sensitivity arises because GRK5, synthesized in the cytosol, 
must be transported through neurites to neuronal terminals, 
while axonal transport deficiency is among the earliest 
neurodegenerative changes occurring in normal aging and early 
AD [57]. Consequently, disruptions in neurite transportation, 
including axonal transport, could negatively impact GRK5 levels in 
neuronal terminals, including synapses. Notably, brain GRK5 
levels sharply decrease during aging in Wild-Type (WT) mice. If 
defective axonal transportation occurs during aging, upregulation 
of GRK5 in an attempt to counteract GRK5 deficiency may not 
rectify the deficiency in neuronal terminals. Instead, the 
overexpressed GRK5 could accumulate where it is not deficient, 
leading to locally upregulated GRK5. Such upregulation could 
affect a wide range of GPCRs crucial in cardiovascular disorders 
[16,19,58,59].

Aged GRK5KO mice recaptured MCI-AD characteristics

MCI-AD represents the last chance to intervene before the
onset of AD [4-7]. A good animal model of MCI-AD will help the 
relevant prevention and therapeutic studies. Currently, many 
studies have used aged WT animals to model MCI-AD, which 
we know MCI-AD is a transitional stage between normal aging 
and AD. This means that a real MCI-AD condition 
should be significantly worse than normal aging. In another 
word, normal aging is not a good representation of MCI-AD. In 
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this regard, aged GRK5KO mice mirror the MCI-AD criteria much 
better than aged WT mice, which will be described in detail 
below.

Up to now, GRK5KO mice have been studied and analyzed by 
multiple groups including ours. Given our focus on the brain 
functionality, the existing data in the GRK5KO mice from our 
group are summarized below and schematically illustrated in 
Figure 1.

    Behavioral assessment: The earliest indication of behavioral 
deficits in GRK5KO mice was reported in younger mice, aged 
8-12 weeks, displaying impaired social novelty recognition by 
another group [60]. Our investigations unveiled a pattern of 
behavioral changes: From 12 months old, GRK5KO mice exhibit 
reduced travel distance in the open field without impaired 
sensorimotor function. By 18 months old, they manifest 
elevated time in the open arm of the elevated plus maze, 
indicating altered alertness and anxiety [30]. These observations 
coincided with the NFT+ axonopathy in the entorhinal and 
transentorhinal cortical regions at this age, revealing a 
connection between impaired behavior and neuropathology. A 
crucial cognitive deficit related to MCI-AD, amnesia, emerges at 
18 months old, affecting spatial working memory in the Radial 
Arm Water Maze (RAWM) task but not the Y maze and Morris 
Water Maze (MWM) tasks, an implication of early-stage short 
memory deficit [30]. Although all the three tasks are able to 
measure short-term spatial memory different complexity of the 
setups allow them to detect the memory deficit with variable 
sensitivities (i.e., more complicated 8-arms in RAWM may 
require more accurate spatial reference memory to succeed, 
therefore can detect earlier stage deficit) [61-63]. This was 
indeed supported by the actual data [30]. Overall, the 18-
month-old GRK5KO mice exhibit amnesia and other cognitive 
impairments, fulfilling the behavioral criteria for MCI-AD.

Pathological assessment: The A/T/N system, introduced 
through the NIA-AA Alzheimer’s diagnostic framework, serves as 
not only an impartial and descriptive classification approach for 
diagnosing and prognosing AD but also as a valuable tool for 
comprehending AD pathogenesis [9,10]. This stems from its 

ability to condense AD pathogenesis into three primary 
categories of pathological alterations: Aβ, Tau and 
Neurodegeneration. This system offers a comprehensive and 
balanced assessment of pathological changes centered around 
AD. Hence, we present the pathological data in the GRK5KO mice 
by aligning them with the ATN system, enhancing clarity and 
while still able to acknowledge any distinctive features when 
necessary, such as the NFT+-axonopathy and cholinergic 
degeneration.

T+-related changes: The T+-related alterations in GRK5KO 
mice, up to 18 months of age, are both significant and represent 
one of the earliest and most pronounced pathological features. 
These changes were primarily identified through Campbell-
Switzer (CS) Silver staining (which is sensitive to 3-repeats tau) 
and NFT immunostaining, revealing Swollen Axonal Clusters 
(SACs) [30]. The characterization of SACs was affirmed through 
axonal selective protein kinesin heavy chain immunostaining and 
electron microscopy (as presented in the original article) [30]. 
Interestingly, both KHC and NFT immunostaining demonstrated 
high sensitivity to the CS Silver positive SACs, reinforcing the T+ 

nature of these changes. Western Blotting corroborated these 
histological findings by showing a significant increase in pTau.

Notably, the temporal appearance of NFT+ axonopathy within 
the brain is particularly striking. It initially emerged in the 
olfactory region as early as 6-9 months old, subsequently in the 
piriform/amygdaloid regions and finally expanded into the 
hippocampus at mild level around 12 months and continued to 
accumulate. Remarkably, no such formations were detected in 
other cortical areas even at 18-months old. These characteristic 
T+ changes parallel those found in human AD brains at Braak 
stage I-II and correspond to the clinical stage of MCI-AD. These 
compelling data offer robust support for the involvement of 
GRK5 deficiency in MCI-AD.

A+-related changes: In 18-month-old GRK5KO mice, the Aβ-
related alterations were identified as positive due to the 
presence of scattered SPs and an increase in SDS-soluble Aβ (sAβ) 
though the SPs were immature at this stage, being primarily 
composed of fibrillary Aβ (fAβ) encased by astrocytes without 
concurrent activation of microglial cells [30]. Additionally, 
notable inflammation was not globally evident at this point.

N+-related changes: In 18-month-old GRK5KO mice, while 
notable neurodegenerative alterations were observed, they 
were mild within the ATN system. No significant neuronal loss, 
either in total or specific to cholinergic neurons, was evidenced 
by quantification through stereology using NeuN or Choline 
Acetyltransferase (ChAT) immunostaining. However, an increase 
in hippocampal Cholinergic Axonal Swelling (CAS) was noted in 
the CA3 region and a decline in Cholinergic Fiber Density (CFD) 
was observed in the CA3 molecular layer and CA1 stratum oriens 
across the numerous brain sub regions investigated in GRK5KO 
mice. These findings collectively point to an early-stage 
cholinergic neurodegeneration.

Other pathological changes: The higher incidence of AD in 
female is a characteristic of AD [64-67]. Previous research from 
our group reported a 2.5-fold increase of the hippocampal 
Swollen Axonal Clusters (SACs) in female GRK5KO mice
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Figure 1: Schematic illustration of Age-dependent changes in 
GRK5KO mice. The age-dependent changes were illustrated as 
cholinergic hypofunction and impaired social novelty 
recognition without pathology at 3 months, impaired 
alertness/fear and mild axonopathy at 12 months and amnesia 
and moderate axonopathy at 18 months in GRK5KO mice. If the 
trend continues, the age-dependent changes may further 
develop in more advanced ages.
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compared to their male counterparts, which was aligned with 
such an AD characteristic, supporting the notion that gender 
differences in AD-related pathology are reflected in the GRK5KO 
mouse model [68],. In addition, we previously reported the 
cognitive evaluation of GRK5KO mice which the data was 
exclusively from female mice [30,69]. This decision stemmed 
from our initial characterization of GRK5KO mice, where 
statistical significance was not achieved from the male or mixed-
gender groups although there was a trend [23,32]. For this 
reason, unless a study focus specifically requires consideration 
of gender differences, use of the female mice in experiments 
may maintain experimental consistency and avoid potential 
confounding factors related to gender variability.

In summary, GRK5KO mice developed progressive cognitive 
impairments including MCI-AD characteristic amnesia and other 
cognitive deficits up to 18 months [30,60]. Pathologically, they 
exhibited increased Aβ/SPs (A+), prominent CS silver staining and 
NFT immuno-positive axonopathy with increased pTau (T+) and 
reduced hippocampal cholinergic fiber density (CFD, → N+), 
matching MCI-AD criteria and displaying characteristics of A+T+N+

MCI, a sub-variance of MCI-AD most likely to convert to AD
[6,7,14,30]. Notably, NFT distribution in the olfactory, piriform, 
amygdaloid and hippocampus of GRK5KO mice aligned with the 
brain regional locations of the entorhinal (i.e., olfactory) to 
transentorhinal (i.e., piriform and amygdaloid) and hippocampal 
locations of the NFTs as defined in the Braak Stage II of human AD 
[11-14,30]. The latter coincides with the late stage of MCI-AD 
according to the recently developed positron emission 
tomography-based Braak staging [14]. On top of all the evidence, 
GRK5KO mice also displayed gender difference with the female 
having worsened pathology, that is an additional coincidence with 
AD. It is worth noting that all these changes in the GRK5KO mice 
were age-dependent development (as illustrated in Figure 1) and 
statistically significant as compared to the age-matched WT 
control mice. This indicates that GRK5KO mice recapture a disease 
stage between normal aging and AD and are more suitable to 
model MCI-AD than the aged WT mice [5,70]. Moreover, these 
GRK5KO changes replicated human MCI-AD features without 
altering any known AD genes or mutations, such as β-Amyloid 
Precursor Protein (APP), Presenilins, tau or ApoE. Therefore, the 
data collectively suggests that GRK5 deficiency may cause MCI-AD 
at least in mice.

GRK5 deficiency renders selective cholinergic
neuronal vulnerability-a potential mechanism and
therapeutical implication

The mechanisms underlying selective loss-of-function in GRK5 
deficiency remain elusive, potentially tied to the distinct 
topographic expression patterns of various GRKs in vivo [19, 38]. 
Notably, presynaptic M2 hyperactivity could arise due to 
insufficient compensation by other GRKs at cholinergic synapses 
where GRK5 is deficient. Interestingly, this in vivo selectivity 
between GRKs and GPCRs is absent in vitro, suggesting that 
beyond chemical binding specificity, the specific spatial 
arrangement of GRK/GPCR pairs in vivo plays a crucial role. 
Consequently, upregulating GRK5 as a therapeutic strategy for 
GRK5  deficiency  is ill-suited. Overexpression of GRK5, particularly

in cases of impaired axonal transport during aging and AD, 
may lead to mislocalization, ineffective compensation and 
broad impacts on various GPCRs, potentially elevating 
cardiovascular disease risks [16,19,58,59,71-73].

In the context of potential impacts of GRK5 deficiency in AD, 
studies have consistently demonstrated that GRK5 deficiency 
exacerbates AD progression in GRK5-deficient APP (GAP) mice. 
These impacts manifest as cognitive decline, increased amyloid 
burden and heightened inflammation [56,69,74,75]. Notably, in 
GAP mice, GRK5 deficiency accelerates Basal Forebrain (BF) 
cholinergic axonopathy and neuronal loss, leading to an earlier 
cognitive decline [69]. The underlying mechanism is believed to 
involve compromised cholinergic neuronal defense due to 
suppressed cAMP/CREB signaling. This signaling pathway plays a 
critical role in regulating the pro/anti-apoptotic threshold in cells 
[76-81]. Consequently, GRK5 deficiency selectively impairs 
presynaptic M2 receptor desensitization, resulting in 
presynaptic M2 hyperactivity [48,52,56]. The presynaptic M2 
receptor is a Gi-coupled inhibitory receptor. While transient 
inhibition of M2 only reduces Acetylcholine (ACh) release 
[82-84], prolonged inhibition (from seconds to hours) suppresses 
the cAMP/CREB signaling pathway, ultimately lowering the 
cholinergic neuronal apoptotic threshold and rendering selective 
vulnerability in cholinergic neurons [56,69].

From a therapeutic perspective, directly overexpressing GRK5 
may not necessarily compensate for the GRK5 deficiency. 
Instead, one way to rectify the impacts of GRK5 deficiency is to 
target the presynaptic M2 hyperactivity. In supporting this 
therapeutic implication, a recent investigation demonstrated 
that blocking the M2 receptor with a selective M2 antagonist 
CN168 in GAP mice effectively prevented BF cholinergic 
degenerative changes and successfully delayed cognitive decline 
for 5 months until the end of the experimental observations 
[85]. This study underscores the utility of this animal model for 
relevant prevention and therapeutic research.

It is noteworthy that CN168, a selective M2 antagonist, falls 
under the category of cholinergic modifying drugs, extensively 
investigated in AD research driven by the cholinergic hypothesis 
[86-89]. Notably, ChEIs, the most recognized cholinergic 
modifying drugs for AD, have been disappointing due to their 
limited efficacy in managing symptoms without modifying the 
disease course [90-92]. The fundamental difference between 
CN168 and ChEIs lies in their target mechanisms for addressing 
the underlying AD pathogenesis (see Table 1 for comparisons 
between these two therapeutic strategies). ChEIs primarily focus 
on inhibiting cholinesterase to preserve Acetylcholine (ACh) 
levels in the synaptic cleft, mainly compensating for cholinergic 
hypofunction and alleviating associated symptoms [90]. In 
contrast, CN168 targets presynaptic M2 hyperactivity, 
preventing over-suppression of cAMP/PKA/CREB signaling in 
cholinergic neurons [38,69,93]. By strengthening the intrinsic 
defenses of these neurons, CN168 aims to enhance resilience 
against degenerative insults. Although CN168 may increase ACh 
release during its use, it was not administered during the 
cognitive tests in this study. In fact, the drug was withdrawn two 
weeks before the cognitive tests [85]. This experimental design 
eliminated any cognitive impact resulting from acute influences
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on ACh release by the drug. If any, the cognitive tests were 
conducted during the drug withdrawal period, during which, in 
the case of ChEI discontinuation or withdrawal, worsening of 
symptoms might occur [94-97]. Thus, the improvements in 

to revolutionize our understanding of AD, shedding light on the 
mechanisms guiding MCI-to-AD transformation. Ultimately, we 
aspire to harness this model for effective pharmaceutical AD 
prevention, instilling hope for millions affected by this condition.

Treatment CN168 ChEIs

Target system Central cholinergic system Central cholinergic system

Target position Presynaptic Postsynaptic

Target molecule M2 autoreceptor ACh

Direct effect M2 inhibition Cholinesterase inhibition

Acute impacts in the presence of the drug Increased ACh release and revoked
suppression of cAMP/PKA/CREB signaling

Delayed ACh degradation, prolonged ACh 
effects on all cholinergic receptors including 
M2 autoreceptor

Potential impacts on the cholinergic 
neurons

Strengthened cholinergic neuronal resilience 
and survival

Weakened cholinergic neuronal resilience 
potentially by enhancing the M2 
hyperactivity

Impacts after the drug withdrawal Cognitively normal Potentially worsened symptoms

Disease modifying Yes No

cognition observed in this study were likely attributed to the 
preservation of cholinergic neurons rather than functional 
compensation for cholinergic hypofunction.

Conclusion
GRK5KO mice exhibited amnesia and other cognitive deficits, 

along with increased AD pathogenesis characterized as A+T+N+. 
These changes align with the criteria for human MCI-AD, 
qualifying for serving as an animal model for MCI-AD. Further 
exploration and utilization of this model will facilitate the efforts 
in understanding MCI to AD conversion and prevention.

Future Perspectives
The urgent need for effective AD prevention underscores the 

importance of understanding MCI-AD. GRK5KO mice faithfully 
replicate MCI-AD characteristics, addressing the unmet need for 
a suitable animal model. However, the precise roles of GRK5 
deficiency in MCI and AD pathogenesis remain to be fully 
elucidated. The convergence of MCI-AD features across multiple 
levels cannot be attributed solely to coincidence; hidden logic 
and phenomena await discovery. Deeper and broader 
investigations into etiology and epidemiology may yield further 
evidence.

Immediate utilization of the GRK5KO model can be both 
mechanistic and therapeutic. By introducing risk factors, we can 
dissect critical drivers of MCI-AD conversion. Targeting known 
pathways (e.g., M2 blockade) may offer therapeutic or 
preventive implications. This research avenue has the potential 
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