ISSN : 2573-4466
Enzymatic Biofuel Cell (EBC) represents a promising green source since it is capable of harvesting electricity from renewable and abundantly available biofuels using enzymes as catalysts. Nevertheless, nowadays long-term stability and low power output are currently the main concerns. To this end, several research studies focus on using complex tridimensional and highly expensive nanostructures as electrode support for enzymes. This increases cell performance whilst drastically reducing the economic feasibility needed for industrial viability. Thus, this paper analyzes a novel flow-based EBC consisting of covalent immobilized GOx (bioanode) and Laccase (biocathode) on a commercial flat conductive polymer. A suitable immobilization technique based on covalent ligands is carried out to enhance EBC durability. The experimental characterization demonstrates that the cell generates power over three weeks, reaching 590 mV and 2.41 µW cm−2 as maximum open circuit voltage and power density, respectively. The most significant contributions of this configuration are definitely ease of implementation, low cost, high scalability, and reproducibility. Therefore, such a design can be considered a step forward in the viable EBC industrialization process for a wide range of applications
Insights in Enzyme Research received 157 citations as per Google Scholar report