ISSN : 2349-3917
Statement of the Problem: Natural swarms exhibit patterns in a variety of forms and have inspired researchers to understand how simple organisms produce complex, emergent patterns occurring when individual organisms follow simple dynamics and local rules. Our work provides a model for swarming behavior of coupled mobile agents with communication-time delay which exhibits multiple dynamic patterns in space, which depend on interaction strength and communication delay. Methodology & Theoretical Orientation: A thorough bifurcation analysis has been carried out to explore parameter regions where various patterns occur. We extend this work to robotics applications by introducing a mixed-reality framework in which real and simulated robots communicate in real time creating the self-organized states predicted by the theory. The mixed-reality framework allows for systematic and incremental introduction of real-world complexity by coupling a few real robots and a large number of idealized (virtual) robots together in a swarm - the latter being well understood. Findings: The proposed swarm controller was tested on two different robotic platforms: NRL’s autonomous air vehicles and UPENN’s micro-autonomous surface vehicles on water. Theoretical pattern formation results are confirmed in mixed-reality experiments. Conclusion & Significance: Increased understanding of challenges for real robots is obtained as a systematic, incremental verification of swarming behavior at low cost and risk of damage. Switching between patterns is achieved in the hybrid experiments, thus simulating flexibile behavior of the real robotic system.